2-edge-Hamiltonian-connectedness of 4-connected plane graphs

نویسندگان

  • Kenta Ozeki
  • Petr Vrána
چکیده

A graph G is called 2-edge-Hamiltonian-connected if for any X ⊂ {x1x2 : x1, x2 ∈ V (G)} with 1 ≤ |X| ≤ 2, G ∪ X has a Hamiltonian cycle containing all edges in X, where G ∪ X is the graph obtained from G by adding all edges in X. In this paper, we show that every 4-connected plane graph is 2edge-Hamiltonian-connected. This result is best possible in many senses and an extension of several known results on Hamiltonicity of 4-connected plane graphs, for example, Tutte’s result saying that every 4-connected plane graph is Hamiltonian, and Thomassen’s result saying that every 4-connected plane graph is Hamiltonian-connected. We also show that although the problem of deciding whether a given graph is 2-edge-Hamiltonian-connected is NP -complete, there exists a polynomial time algorithm to solve the problem if we restrict the input to plane graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thomassen's conjecture implies polynomiality of 1-Hamilton-connectedness in line graphs

A graph G is 1-Hamilton-connected if G − x is Hamilton-connected for every x ∈ V (G), and G is 2-edge-Hamilton-connected if the graph G + X has a hamiltonian cycle containing all edges of X for any X ⊂ E+(G) = {xy| x, y ∈ V (G)} with 1 ≤ |X| ≤ 2. We prove that Thomassen’s conjecture (every 4-connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent...

متن کامل

Collapsible graphs and Hamiltonian connectedness of line graphs

Thomassen conjectured that every 4-connected line graph is Hamiltonian. Chen and Lai [Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics— an update, in: Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory, vol. 95, World Scientific, Singapore/London, 1995, pp. 53–69, Conjecture 8.6] conjectured that every 3-edge connected, essentially 6-edge connected graph ...

متن کامل

Lovász-Plummer conjecture on Halin graphs

A Halin graph, defined by Halin [3], is a plane graph H = T ∪ C such that T is a spanning tree of H with no vertices of degree 2 where |T | ≥ 4 and C is a cycle whose vertex set is the set of leaves of T . In his work, as an example of a class of edge-minimal 3-connected plane graphs, Halin constructed this family of plane graphs, which have many interesting properties. Lovász and Plummer [5] n...

متن کامل

Hamiltonian connectedness in 3-connected line graphs

We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [J. of Combinatorial Theory, Ser. B. 82 (2001), 306-315] that every 4-connected line graph of a claw free graph...

متن کامل

Non-Hamiltonian 3–Regular Graphs with Arbitrary Girth

It is well known that 3–regular graphs with arbitrarily large girth exist. Three constructions are given that use the former to produce non-Hamiltonian 3–regular graphs without reducing the girth, thereby proving that such graphs with arbitrarily large girth also exist. The resulting graphs can be 1–, 2– or 3–edge-connected depending on the construction chosen. From the constructions arise (nai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014